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1. INTRODUCTION

The #ow-induced vibration in industry "elds has been studied for a long time since it always
involves a possibility of severe accidents by the several types of vibrations related to
a #uid}structure interaction. Although the vibration analysis of a pipe which having some
concentrated masses without a #uid #ow had been studied early [1}4], the vibration
analysis of that case when a #uid #ows through a pipe was not until 1970. Hill and Swanson
[5] investigated the e!ect of concentrated masses on the instability of the #uid-conveying
cantilever pipe. Chen and Jendrzejczyk [6] experimentally studied the natural frequencies,
mode shapes, and critical velocities for the #uid-conveying cantilever pipe with
a concentrated mass at the end of the pipe. Wu and Raju [7] proposed that a concentrated
mass installed at the mid-span of the simply supported pipe could change natural
frequencies and mode shapes. Although some interesting papers [4, 8, 9] regarding the
rotary inertia e!ect of concentrated masses were published, no one introduced it into the
#ow-induced vibration "eld.

Therefore, the present study is aimed at the determination of the e!ect of rotary inertia of
concentrated masses on the natural vibrations and instability of a pipe conveying
incompressible #uid. For the analysis, three conservative boundary conditions
(i.e., supported}supported, clamped}supported, and clamped}clamped) were assumed as
shown in Figure 1.

2. THEORY AND NUMERICAL ANALYSIS

The well-known governing equation [10] for the Euler}Bernoulli-type pipe conveying
incompressible #uid through x co-ordinate and vibrating y direction becomes
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where E and I are the modulus of elasticity and the area moment of inertia of the pipe,
m

f
and m

t
are #uid and pipe masses per unit length, and ; and t are the constant uniform

#uid velocity and time respectively.
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Figure 1. Schematic diagram of the #uid-conveying pipes: (a) supported}supported; (b) clamped}supported; (c)
clamped}clamped.
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According to Pan [8] and Sato et al. [4], the e!ect of concentrated masses placed at
x"x

i
can be modelled as follows:
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where m
i
and J

i
are the concentrated mass and its rotary inertia and M and d are the

number of concentrated masses and the Dirac delta function respectively. The "rst equation
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containing m
i
represents the inertia force due to the lateral acceleration of concentrated

masses while the second equation containing J
i
represents the rotary inertia force due to the

angular acceleration of concentrated masses.
Finally, the governing equation for the pipe conveying incompressible #uid and having

several concentrated masses can be expressed as
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Introducing dimensionless parameters, equation (3) becomes
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where the dimensionless parameters are
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Here, ¸ and X are the pipe length and the circular frequency of the pipe respectively.
The dimensionless lateral displacement g(m, q) can be written as follows:

g(m, q)"a
m
(q)U

m
(m), (5)

where U
m

is the dimensionless mth mode of the pipe under the speci"ed boundary condition

and a
m

("e+uqW, where j"J!1 and W is a constant) is a function of dimensionless time
only.

By inserting equation (5) into equation (4), the dimensionless governing equation
becomes
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Applying Galerkin's method [5] for the analysis, equation (5) can be expressed as follows:

g(m, q)"
=
+
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(q)/

m
(m), (7)

where /
m
(m) is the dimensionless mode shape function of a pipe without #uid and

concentrated masses [11].
Introducing the orthogonality of the functions, multiplying equation (10) by U

n
(m), and

integrating it about m from m"0 to 1, we "nally obtain the governing equation in the matrix
form,
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Through some matrix calculations equation (8) can be changed to the following simple
form:

[ f (l)]MWN"M0N, (9)

where l"!ju.
Equation (9) has a non-trivial solution only if the characteristic determinant, i.e., the

determinant of the matrix [ f (l)] vanishes. Generally, dimensionless eigenvalues of the
determinant have its real and imaginary parts as follows:

u"u
R
#u

I
. (10)

The dimensionless real component, u
R
, corresponds to the frequency of oscillation whereas

the dimensionless imaginary component, u
I
, is associated with stability of the system. It is

seen that the system is subject to a large number of stabilities, in the regions over which
u

I
(0, by bucking if u

R
"0, and by #utter if u

R
O0 [10].

3. RESULTS AND DISCUSSION

Figure 2 shows variation of the "rst three natural frequencies for the #uid-conveying
pipes as a function of the #uid velocity. As shown in the "gure, introduction of rotary inertia
causes much change for the second and third natural frequencies while it has relatively small
in#uence on the "rst natural frequency. For example, the ratios between two natural
frequencies with and without rotary inertia (i.e., u

with
/u

without
) for the clamped}clamped pipe

with the #uid velocity u"2)0 are 0)430 and 0)886 for the third and "rst natural frequencies,
respectively. For the same parametric values the e!ect of rotary inertia for the
clamped}clamped pipe can be identi"ed as the most visible among the three pipe boundary
conditions. With increasing #ow, the natural frequencies of all the modes vanish in turn,
indicating the onset of buckling in the corresponding modes of the system. The values of the
real frequencies (u

R
) have 0 as the #uid velocities, (u) have n, 2n, and 3n for the

supported}supported, 4)49, 7)73, and 10)91 for the clamped}supported, and 2n, 8)99, 12)57
for the clamped}clamped pipe. Once a natural frequency attains a zero value, instability of
the system begins and the #uid velocity in that case can be de"ned as a threshold (critical)
velocity. Since u

R
"0 and u

I
(0 as the #uid velocities increase more than the critical



Figure 2. Natural frequency variation due to #uid velocity change. a
1
"0)2, a

2
"0)1, b"0)2, k

1
"0)018,

k
2
"0)025, m

1
"0)3, m

2
"0)5. (a) Supported}supported; (b) clamped}supported; (c) clamped}clamped: **,

without rotary inertia ...... , with rotary inertia.
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velocities, the pipes assumed for the analysis bow out and buckle when the #ow velocity
exceeds the critical velocity. Through the analysis it is identi"ed that the consideration of
rotary inertia cannot change the critical #uid velocities suggested by Paidoussis and Issid
[12] and Laura et al. [13] for the #uid-conveying pipe without concentrated masses.

Figure 3 shows the relation between the value of rotary inertia, k
1
, and the "rst three

natural frequencies. For the analysis, a concentrated mass (a
1
"1)0) is assumed to be at

0)3¸ (i.e., m
1
"0)3 of the pipe and its rotary inertia is changed from k

1
"0)0 to 0)5. As

shown in the "gure, the consideration of rotary inertia produces much change on the
natural frequencies. Its e!ect on the change of the natural frequencies is visible as k

1
has

a small value (i.e., less than 0)1 for the present case). Further increase of k
1
causes the second

and third natural frequencies to converge stationary values (e.g., nearly 35)0 and 19)0,
respectively, for the second and third natural frequencies of the clamped}supported pipe).



Figure 3. Rotary inertia versus natural frequency; u"0)5, a
1
"1)0, b"0)2, m

1
"0)3. (a) Supported}supported;

(b) clamped}supported; (c) clamped}clamped: **, First; ......, Second; - ) - ) - ) - ) , Third.
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However, the value of the "rst natural frequency is almost linearly decreasing as the value of
rotary inertia k

1
starts increasing.

The combined e!ects of rotary inertia, k
1
, and the location of a concentrated mass, m

1
, on

the natural vibrations of the three boundary conditions have been determined and some
results are shown in Figure 4. For the clamped}supported pipe, the values of the natural
frequencies between two cases of m

1
"0)0 and 1)0 are much di!erent from each other due to

the di!erent pipe end conditions. The location of the largest di!erence between two natural
frequencies with and without rotary inertia is dependent on the pipe boundary conditions.
For the second natural frequency, the locations are 0)5 for the clamped}clamped pipe, 0, 0)5,
and 1)0 for the supported}supported pipe, and 0)56 and 1)0 for the clamped}supported pipe.
Moreover, with considering rotary inertia, the second natural frequency approaches the
"rst natural frequency without rotary inertia as m

1
approaches mid-span of the pipe.



Figure 4. Natural frequency variation due to change of the location of the concentrated mass. u"1)0, a
1
"0)1,

b"0)5, k
1
"0)01. (a) Supported}supported; (b) clamped}supported; (c) clamped}clamped:**, without rotary

inertia: ......, with rotary inertia.
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Figure 5 depicts the natural mode shapes of the system for the case of having two
concentrated masses (a

1
"1)0 and a

2
"0)2). The heavier one is located at m"0)1 and the

lighter one is at m"0)5. As shown in the "gures, rotary inertia produces relatively small
change on the "rst mode shape while it causes much change on the second and third mode
shapes. The trend is the same regardless of pipe boundary conditions. By introducing rotary
inertia, the number of nodes and its location can be changed. There is no "xed node at the
second mode shape of the clamped}supported and clamped}clamped pipes when the rotary
inertia e!ect is included into the analysis. Moreover, the number of the nodes for the third
natural mode shapes for the three boundary conditions are reduced to 1 with including
rotary inertia e!ect into the analysis.



Figure 5. Natural mode shapes; u"0)5, a
1
"1)0, a

2
"0)2, b"0)4, k

1
"0)01, k

2
"0)05, m

1
"0)1, m

2
"0)5. (a)

Supported}supported; (b) clamped}supported; (c) clamped}clamped:**, without rotary inertia; ......, with rotary
inertia.
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